z-logo
Premium
Intrinsic flexibility of NLRP pyrin domains is a key factor in their conformational dynamics, fold stability, and dimerization
Author(s) -
Huber Roland G.,
Eibl Clarissa,
Fuchs Julian E.
Publication year - 2015
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2601
Subject(s) - pyrin domain , protein structure , conformational change , chemistry , biology , receptor , biophysics , inflammasome , biochemistry
Nucleotide‐binding domain leucine‐rich repeat‐containing receptors (NLRs) are key proteins in the innate immune system. The 14 members of the NLRP family of NLRs contain an N‐terminal pyrin domain which is central for complex formation and signal transduction. Recently, X‐ray structures of NLRP14 revealed an unexpected rearrangement of the α5/6 stem‐helix of the pyrin domain allowing a novel symmetric dimerization mode. We characterize the conformational transitions underlying NLRP oligomerization using molecular dynamics simulations. We describe conformational stability of native NLRP14 and mutants in their monomeric and dimeric states and compare them to NLRP4, a representative of a native pyrin domain fold. Thereby, we characterize the interplay of conformational dynamics, fold stability, and dimerization in NLRP pyrin domains. We show that intrinsic flexibility of NLRP pyrin domains is a key factor influencing their behavior in physiological conditions. Additionally, we provide further evidence for the crucial importance of a charge relay system within NLRPs that critically influences their conformational ensemble in solution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here