z-logo
Premium
Engineering deamidation‐susceptible asparagines leads to improved stability to thermal cycling in a lipase
Author(s) -
Bhanuramanand K.,
Ahmad Shoeb,
Rao N. M.
Publication year - 2014
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2516
Subject(s) - deamidation , thermostability , chemistry , mutant , thermal stability , biochemistry , lipase , asparagine , protein engineering , amino acid , enzyme , organic chemistry , gene
At high temperatures, protein stability is influenced by chemical alterations; most important among them is deamidation of asparagines. Deamidation kinetics of asparagines depends on the local sequence, solvent, pH, temperature, and the tertiary structure. Suitable replacement of deamidated asparagines could be a viable strategy to improve deamidation‐mediated loss in protein properties, specifically protein thermostability. In this study, we have used nano RP‐HPLC coupled ESI MS/MS approach to identify residues susceptible to deamidation in a lipase (6B) on heat treatment. Out of 15 asparagines and six glutamines in 6B, only five asparagines were susceptible to deamidation at temperatures higher than 75°C. These five positions were subjected to site saturation mutagenesis followed by activity screen to identify the most suitable substitutions. Only three of the five asparagines were found to be tolerant to substitutions. Best substitutions at these positions were combined into a mutant. The resultant lipase (mutC) has near identical secondary structure and improved thermal tolerance as compared to its parent. The triple mutant has shown almost two‐fold higher residual activity compared to 6B after four cycles at 90°C. MutC has retained more than 50% activity even after incubation at 100°C. Engineering asparagines susceptible to deamidation would be a potential strategy to improve proteins to withstand very high temperatures.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here