Premium
Molecular basis of MAP kinase regulation
Author(s) -
Peti Wolfgang,
Page Rebecca
Publication year - 2013
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2374
Subject(s) - isothermal titration calorimetry , kinase , mapk/erk pathway , p38 mitogen activated protein kinases , mitogen activated protein kinase , microbiology and biotechnology , docking (animal) , chemistry , biochemistry , protein kinase a , biology , computational biology , medicine , nursing
Mitogen‐activated protein kinases (MAPKs; ERK1/2, p38, JNK, and ERK5) have evolved to transduce environmental and developmental signals (growth factors, stress) into adaptive and programmed responses (differentiation, inflammation, apoptosis). Almost 20 years ago, it was discovered that MAPKs contain a docking site in the C‐terminal lobe that binds a conserved 13‐16 amino acid sequence known as the D‐ or KIM‐motif (kinase interaction motif). Recent crystal structures of MAPK:KIM‐peptide complexes are leading to a precise understanding of how KIM sequences contribute to MAPK selectivity. In addition, new crystal and especially NMR studies are revealing how residues outside the canonical KIM motif interact with specific MAPKs and contribute further to MAPK selectivity and signaling pathway fidelity. In this review, we focus on these recent studies, with an emphasis on the use of NMR spectroscopy, isothermal titration calorimetry and small angle X‐ray scattering to investigate these processes.