Premium
Selective peptide inhibitors of bifunctional thymidylate synthase‐dihydrofolate reductase from Toxoplasma gondii provide insights into domain–domain communication and allosteric regulation
Author(s) -
J. Landau Mark,
Sharma Hitesh,
Anderson Karen S.
Publication year - 2013
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2300
Subject(s) - dihydrofolate reductase , thymidylate synthase , allosteric regulation , toxoplasma gondii , biology , phosphofructokinase 2 , mutagenesis , biochemistry , enzyme , linker , peptide , mutation , genetics , gene , fluorouracil , chemotherapy , computer science , antibody , operating system
The bifunctional enzyme thymidylate synthase–dihydrofolate reductase (TS–DHFR) plays an essential role in DNA synthesis and is unique to several species of pathogenic protozoans, including the parasite Toxoplasma gondii . Infection by T. gondii causes the prevalent disease toxoplasmosis, for which TS–DHFR is a major therapeutic target. Here, we design peptides that target the dimer interface between the TS domains of bifunctional T. gondii TS–DHFR by mimicking β‐strands at the interface, revealing a previously unknown allosteric target. The current study shows that these β‐strand mimetic peptides bind to the apo‐enzyme in a species‐selective manner to inhibit both the TS and distal DHFR. Fluorescence spectroscopy was used to monitor conformational switching of the TS domain and demonstrate that these peptides induce a conformational change in the enzyme. Using structure‐guided mutagenesis, nonconserved residues in the linker between TS and DHFR were identified that play a key role in domain–domain communication and in peptide inhibition of the DHFR domain. These studies validate allosteric inhibition of apo‐TS, specifically at the TS–TS interface, as a potential target for novel, species‐specific therapeutics for treating T. gondii parasitic infections and overcoming drug resistance.