z-logo
Premium
Structure‐based network analysis of an evolved G protein‐coupled receptor homodimer interface
Author(s) -
Nichols Sara E.,
Hernández Carlos X.,
Wang Yi,
McCammon James Andrew
Publication year - 2013
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2258
Subject(s) - druggability , allosteric regulation , computational biology , coevolution , protein structure , modularity (biology) , biology , genetics , receptor , gene , biochemistry , evolutionary biology
Crystallographic structures and experimental assays of human CXC chemokine receptor type 4 (CXCR4) provide strong evidence for the capacity to homodimerize, potentially as a means of allosteric regulation. Even so, how this homodimer forms and its biological significance has yet to be fully characterized. By applying principles from network analysis, sequence‐based approaches such as statistical coupling analysis to determine coevolutionary residues, can be used in conjunction with molecular dynamics simulations to identify residues relevant to dimerization. Here, the predominant coevolution sector lies along the observed dimer interface, suggesting functional relevance. Furthermore, coevolution scoring provides a basis for determining significant nodes, termed hubs, in the network formed by residues found along the interface of the homodimer. These node residues coincide with hotspots indicating potential druggability. Drug design efforts targeting such key residues could potentially result in modulation of binding and therapeutic benefits for disease states, such as lung cancers, lymphomas and latent HIV‐1 infection. Furthermore, this method may be applied to any protein–protein interaction.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom