Premium
Mutations for decreasing the immunogenicity and maintaining the function of core streptavidin
Author(s) -
Yumura Kyohei,
Ui Mihoko,
Doi Hirofumi,
Hamakubo Takao,
Kodama Tatsuhiko,
Tsumoto Kouhei,
Sugiyama Akira
Publication year - 2013
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2203
Subject(s) - isothermal titration calorimetry , immunogenicity , chemistry , tetramer , streptavidin , biophysics , salt bridge , biotin , biochemistry , mutant , immune system , biology , genetics , gene , enzyme
The defining property of core streptavidin (cSA) is not only its high binding affinity for biotin but also its pronounced thermal and chemical stability. Although potential applications of these properties including therapeutic methods have prompted much biological research, the high immunogenicity of this bacterial protein is a key obstacle to its clinical use. To this end, we have successfully constructed hypoimmunogenic cSA muteins in a previous report. However, the effects of these mutations on the physicochemical properties of muteins were still unclear. These mutations retained the similar electrostatic charges to those of wild‐type (WT) cSA, and functional moieties with similar hydrogen bond pattern. Herein, we performed isothermal titration calorimetry, differential scanning calorimetry, and sodium dodecyl sulfate–polyacrylamide gel electrophoresis to gain insight into the physicochemical properties and functions of these modified versions of cSA. The results indicated that the hypoimmunogenic muteins retained the biotin‐binding function and the tetramer structure of WT cSA. In addition, we discuss the potential mechanisms underlying the success of these mutations in achieving both immune evasion and retention of function; these mechanisms might be incorporated into a new strategy for constructing hypoimmunogenic proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom