Premium
Comparative surface geometry of the protein kinase family
Author(s) -
Thompson Elaine E.,
Kornev Alexandr P.,
Kannan Natarajan,
Kim Choel,
Ten Eyck Lynn F.,
Taylor Susan S.
Publication year - 2009
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.209
Subject(s) - docking (animal) , protein structure , conserved sequence , active site , binding site , casein kinase 2 , protein superfamily , biology , kinase , crystallography , biophysics , protein kinase a , chemistry , peptide sequence , genetics , biochemistry , cyclin dependent kinase 2 , enzyme , medicine , nursing , gene
Identifying conserved pockets on the surfaces of a family of proteins can provide insight into conserved geometric features and sites of protein–protein interaction. Here we describe mapping and comparison of the surfaces of aligned crystallographic structures, using the protein kinase family as a model. Pockets are rapidly computed using two computer programs, FADE and Crevasse. FADE uses gradients of atomic density to locate grooves and pockets on the molecular surface. Crevasse, a new piece of software, splits the FADE output into distinct pockets. The computation was run on 10 kinase catalytic cores aligned on the αF‐helix, and the resulting pockets spatially clustered. The active site cleft appears as a large, contiguous site that can be subdivided into nucleotide and substrate docking sites. Substrate specificity determinants in the active site cleft between serine/threonine and tyrosine kinases are visible and distinct. The active site clefts cluster tightly, showing a conserved spatial relationship between the active site and αF‐helix in the C‐lobe. When the αC‐helix is examined, there are multiple mechanisms for anchoring the helix using spatially conserved docking sites. A novel site at the top of the N‐lobe is present in all the kinases, and there is a large conserved pocket over the hinge and the αC‐β4 loop. Other pockets on the kinase core are strongly conserved but have not yet been mapped to a protein–protein interaction. Sites identified by this algorithm have revealed structural and spatially conserved features of the kinase family and potential conserved intermolecular and intramolecular binding sites.