Premium
Refractive Imaging of Air Shock Above Microscale Defects in Pentaerythritol Tetranitrate (PETN) Films
Author(s) -
Peguero Julio C.,
Forrest Eric C.,
Knepper Robert,
Hargather Michael J.,
Tappan Alexander S.,
Marquez Michael P.,
Vasiliauskas Jonathan G.,
Rupper Stephen G.
Publication year - 2021
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.202000029
Subject(s) - pentaerythritol tetranitrate , explosive material , microscale chemistry , materials science , shadowgraph , detonation , shock (circulatory) , composite material , deposition (geology) , microstructure , shock wave , optics , optoelectronics , mechanics , chemistry , medicine , paleontology , physics , mathematics education , mathematics , organic chemistry , sediment , biology
Physical vapor deposition (PVD) of high explosives can produce energetic samples with unique microstructure and morphology compared to traditional powder processing techniques, but challenges may exist in fabricating explosive films without defects. Deposition conditions and substrate material may promote microcracking and other defects in the explosive films. In this study, we investigate effects of engineered microscale defects (gaps) on detonation propagation and failure for pentaerythritol tetranitrate (PETN) films using ultra‐high‐speed refractive imaging and hydrocode modelling. Observations of the air shock above the gap reveal significant instabilities during gap crossing and re‐ignition.