z-logo
Premium
Preparation and Properties of a nRDX‐based Propellant
Author(s) -
Wang Binbin,
Liao Xin,
Wang Zeshan,
DeLuca Luigi T.,
Liu Zhitao,
Fu You
Publication year - 2017
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.201700022
Subject(s) - propellant , materials science , aerospace engineering , engineering
The incorporation of nano‐scaled cyclotrimethylene trinitramine (nRDX) in nitrocellulose (NC)‐based propellants poses processing problems when following conventional methods. Hence, a new preparation method containing a pre‐dispersion process was developed, by which 30 mass % RDX (290 nm) was incorporated in the propellant. Meanwhile, the corresponding 290 nm, 12.85 μm and 97.76 μm RDX‐based propellants were prepared for comparison using a conventional method. The morphology, structure, ballistic and mechanical properties of the prepared propellants were characterized by scanning electron microscopy (SEM), density analyzer, closed vessel (CV), uniaxial tensile tester and impact tester. The results indicate that the nRDX particles were uniformly dispersed in the NC/NG/TEGDN matrix using the novel method, while agglomerated and recrystallized into large particles with the conventional method. The propellant density increased with decreasing RDX particle size. In particular, the 290 nm RDX‐based propellant exhibited a higher burning rate and lower average pressure exponent ( α =0.958) compared to the 12.85 μm RDX‐based propellant ( α =1.043). The tensile strength, elongation at break and impact strength of the RDX‐based propellant at −40 °C, 20 °C and 50 °C were dramatically improved by using 290 nm RDX with the novel method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here