Premium
Elasticity of Crystalline Molecular Explosives
Author(s) -
Hooks Daniel E.,
Ramos Kyle J.,
Bolme C. A.,
Cawkwell Marc J.
Publication year - 2015
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.201400282
Subject(s) - pentaerythritol tetranitrate , explosive material , detonation , tatb , materials science , energetic material , elasticity (physics) , hyperelastic material , predictability , composite material , structural engineering , chemistry , physics , engineering , organic chemistry , finite element method , quantum mechanics
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, and an evaluation of sources of error is presented. Computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.