Premium
Multiscale Simulation on the Influence of Dimethyl Hydantoin on Mechanical Properties of GAP/RDX Propellants
Author(s) -
Lan Yanhua,
Zhai Jinxian,
Li Dinghua,
Yang Rongjie
Publication year - 2014
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.201200210
Subject(s) - propellant , molecular dynamics , materials science , dissipative particle dynamics , van der waals force , band gap , binding energy , chemical physics , computational chemistry , chemical engineering , chemistry , composite material , organic chemistry , molecule , atomic physics , optoelectronics , engineering , polymer , physics
The influence of dimethyl hydantoin (DMH) on the mechanical properties of GAP/RDX propellant was studied by molecular dynamics (MD) and dissipative particle dynamics (DPD) simulation. The results showed that the binding energies ( E binding ) between GAP and different surfaces of RDX were in the order of (010)>(001)>(100). Compared to GAP/RDX, GAP grafted with DMH (GAP‐DMH) exhibits higher binding energies with RDX, and the sequence of E binding turns to (001)>(010)>(100). Radial distribution simulations demonstrated that GAP‐DMH is more close to the surfaces of RDX, increasing the van der Waals energies between GAP‐DMH and RDX. The stress and strain of GAP‐DMH/RDX excel those of GAP/RDX. DPD simulations showed that GAP‐DMH was able to restrain the agglomeration of RDX, to improve the dispersibility and to enlarge the contact surface with RDX, which also increased the mechanical properties of GAP/RDX propellant.