Premium
Determination of Urea Nitrate and Guanidine Nitrate Vapor Pressures by Isothermal Thermogravimetry
Author(s) -
Oxley Jimmie,
Smith James L.,
Brady Joe,
Naik Sweta
Publication year - 2010
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.200800013
Subject(s) - chemistry , nitrate , ammonium nitrate , isothermal process , explosive material , vapor pressure , thermogravimetry , sublimation (psychology) , inorganic chemistry , analytical chemistry (journal) , organic chemistry , thermodynamics , psychology , physics , psychotherapist
Since the bombing of Pan Am Flight 103 over Lockerbie, Scotland in 1988, detection of military explosives has received much attention. Only in the last few years has detection of improvised explosives become a priority. Many detection methods require that the particulate or vapor be available. Elsewhere we have reported the vapor pressures of peroxide explosives triacetone triperoxide (TATP), diacetone diperoxide (DADP), and 2,4,6‐trinitrotoluene (TNT). Herein we examine the vapor signatures of the nitrate salts of urea and guanidine (UN and GN, respectively), and compare them to ammonium nitrate (AN) and TATP using an isothermal thermo‐gravimetric method. The vapor signatures of the nitrate salts are assumed to be the vapor pressures of the neutral parent base and nitric acid. Studies were performed at elevated temperatures (80–120 °C for UN, 205–225 °C for GN, 100–160 °C for AN, and 40–59 °C for TATP), enthalpies of sublimation calculated and vapor pressures extrapolated to room temperature. Reported vapor pressure values (in Pa) are as follows: GN ≪UN