Premium
Preparation and Characterization of Nano‐TATB Explosive
Author(s) -
Yang Guangcheng,
Nie Fude,
Huang Hui,
Zhao Lin,
Pang Wanting
Publication year - 2006
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.200600053
Subject(s) - tatb , materials science , particle size , thermogravimetric analysis , thermal decomposition , analytical chemistry (journal) , nanoparticle , chemical engineering , chemistry , nanotechnology , explosive material , organic chemistry , detonation , engineering
Nano‐TATB was prepared by solvent/nonsolvent recrystallization with concentrated sulfuric acid as solvent and water as nonsolvent. Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) were used to characterize the appearance and the size of the particles. The results revealed that nano‐TATB particles have the shape of spheres or ellipsoids with a size of about 60 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. By using X‐ray powder diffraction (XRD), broadening of diffraction peaks and decreasing intensity were observed, when the particle sizes decreases to the nanometer size range. The corrected average particle size of nano‐TATB was estimated using the Scherrer equation and the size ranged from 27 nm to 41 nm. Furthermore, the specific surface area and pore diameter of nano‐TATB were determined by BET method. The values were 22 m 2 /g and 1.7 nm respectively. Thermogravimetric (TG) and Differential Scanning Calorimetric (DSC) curves revealed that thermal decomposition of nano‐TATB occurs in the range of 356.5 °C–376.5 °C and its weight loss takes place at about 230 °C. Furthermore, a slight increase in the weight loss was observed for nano‐TATB in comparison with micro‐TATB.