Premium
Properties of CP: Coefficient of Thermal Expansion, Decomposition Kinetics, Reaction to Spark, Friction and Impact
Author(s) -
Weese Randell K.,
Burnham Alan K.
Publication year - 2006
Publication title -
propellants, explosives, pyrotechnics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.56
H-Index - 65
eISSN - 1521-4087
pISSN - 0721-3115
DOI - 10.1002/prep.200600033
Subject(s) - thermogravimetric analysis , materials science , thermal decomposition , isothermal process , thermodynamics , differential scanning calorimetry , kinetics , thermal expansion , analytical chemistry (journal) , decomposition , composite material , chemistry , organic chemistry , physics , quantum mechanics
The properties of pentaamine (5‐cyano‐2H‐tetrazolato‐N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook‐off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 68.95 MPa and analyzed over a dynamic temperature range of −20 °C to 70 °C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1–7 °C min −1 in perforated pans and of 0.1–1.0 °C min −1 in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 °C and 240 °C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.