z-logo
Premium
Viewed by too many or viewed too little: Using information dissemination for audience segmentation
Author(s) -
Jansen Bernard J.,
Jung SoonGyo,
Salminen Joni,
An Jisun,
Kwak Haewoon
Publication year - 2017
Publication title -
proceedings of the association for information science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.193
H-Index - 14
ISSN - 2373-9231
DOI - 10.1002/pra2.2017.14505401021
Subject(s) - identification (biology) , computer science , set (abstract data type) , persona , target audience , dissemination , segmentation , information retrieval , content analysis , order (exchange) , world wide web , advertising , artificial intelligence , sociology , human–computer interaction , business , telecommunications , social science , botany , finance , biology , programming language
The identification of meaningful audience segments, such as groups of users, consumers, readers, audience, etc., has important applicability in a variety of domains, including for content publishing. In this research, we seek to develop a technique for determining both information dissemination and information discrimination of online content in order to isolate audience segments. The benefits of the technique include identification of the most impactful content for analysis. With 4,320 online videos from a major news organization, a set of audience attributes, and more than 58 million interactions from hundreds of thousands of users, we isolate the key pieces of content in terms of identifying audience segments that are both (a) least and most discriminating in terms of audience segments and (b) the least and most impactful. By empirical methods, we show that 25.3 percent of the videos are so widely disseminated (i.e., viewed by so many different segments) that they are non‐discriminatory, while 29.7 percent of the videos are very discriminatory (i.e., can clearly identify one or more audience segments) but their impact is marginal, as the user base is small. Implications are that there are critical values that can be identified to isolate the set of both distinct and impactful content in a given data set of online content. We demonstrate the utility of this line of analysis by using the approach to identify critical cut‐off values for dynamic persona generation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here