Premium
CFTR, bicarbonate, and the pathophysiology of cystic fibrosis
Author(s) -
Borowitz Drucy
Publication year - 2015
Publication title -
pediatric pulmonology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.866
H-Index - 106
eISSN - 1099-0496
pISSN - 8755-6863
DOI - 10.1002/ppul.23247
Subject(s) - cystic fibrosis , bicarbonate , cystic fibrosis transmembrane conductance regulator , regulator , secretion , medicine , pathophysiology , potentiator , endocrinology , biochemistry , immunology , biology , gene
Summary The gene that encodes for the cystic fibrosis transmembrane regulator protein (CFTR) was identified in 1989, yet major pathophysiologic questions remain unanswered. There is emerging evidence that CFTR is a bicarbonate channel, a driver of chloride‐bicarbonate exchange and through its action on local pH, a regulator of other ion channels and of proteins that function optimally in a neutral environment. In both the respiratory and gastrointestinal (GI) tracts, bicarbonate drives ionic content and fluid on epithelial surfaces, allows mucins to unfold and become slippery, and contributes to innate immunity. In the GI tract bicarbonate neutralizes gastric acid to support digestion and absorption. When CFTR is dysfunctional, lack of bicarbonate secretion disrupts these normal processes and thus leads directly to the clinical symptoms and signs of CF. This article synthesizes evidence from cell, animal, and human investigations that support these concepts. Bicarbonate secretion does not seem to be the same in all tissues and varies with physiologic demand. Thus, tissue type and whether conditions are baseline or stimulated needs to be taken into account when evaluating the evidence concerning the role of bicarbonate in the pathophysiology of CF as a regulator of local pH. Basic and applied research that focuses on the role of CFTR‐mediated bicarbonate secretion helps explain many of the diverse clinical manifestations that are CF. Pediatr Pulmonol. 2015; 50:2S4–S30. © 2015 Wiley Periodicals, Inc.