z-logo
Premium
Toward Uniform Optical Properties of Carbon Dots
Author(s) -
Noun Farah,
Manioudakis John,
Naccache Rafik
Publication year - 2020
Publication title -
particle and particle systems characterization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 56
eISSN - 1521-4117
pISSN - 0934-0866
DOI - 10.1002/ppsc.202000119
Subject(s) - quantum dot , nanomaterials , nanotechnology , carbon quantum dots , fluorescence , materials science , carbon fibers , ultrafiltration (renal) , absorbance , chemical engineering , chemistry , chromatography , physics , quantum mechanics , composite number , engineering , composite material
Carbon dots possess versatile optical properties that have prompted their investigation in applications including photocatalysis, photovoltaics, imaging, and drug delivery, among others. However, the preparation of these nanodots is accompanied by the formation of fluorophores and intermediates, which can be difficult to separate. In the absence of thorough purification protocols, the reported optical properties are often heterogeneous, which hinders understanding of their physicochemical and optical properties and concrete application development. Here, two hydrophilic carbon dot systems starting with citric acid and diethylenetriamine are prepared. The impact of purification, including dialysis, ultrafiltration, and organic washes, on the properties of the dots is demonstrated. It is shown that monitoring the purification endpoint using near‐infrared, fluorescence, and absorbance spectroscopies is possible. Moreover, it is demonstrated that fluorescence quantum yields can be a reliable tool to determine the purification endpoint. This work shows that even carbon dots derived from the same chemical precursors can have different purification profiles and purification requirements. However, the developed approach can be used to determine the proper purification procedure and endpoint for any carbon dot system regardless of the starting materials. Finally, it is envisioned that this work can be easily extended toward the purification of other hydrophilic nanomaterials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here