Premium
Drug‐Conjugation Induced Self‐Assembly of Feather Keratin‐Based Prodrug for Tumor Intracellular Reduction Triggered Drug Delivery
Author(s) -
Zhang Huifang,
Liu Peng
Publication year - 2019
Publication title -
particle and particle systems characterization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 56
eISSN - 1521-4117
pISSN - 0934-0866
DOI - 10.1002/ppsc.201900189
Subject(s) - prodrug , chemistry , conjugate , micelle , keratin , in vitro , drug delivery , doxorubicin , drug , ethylene glycol , intracellular , biophysics , pharmacology , biochemistry , biology , organic chemistry , chemotherapy , mathematical analysis , paleontology , genetics , mathematics , aqueous solution
As a kind of natural protein, keratin is widely investigated in the biomedical field. Here, for the first time, a keratin‐based prodrug (PK‐SS‐D) is designed for tumor intracellular reduction triggered drug delivery, by conjugating doxorubicin (DOX) onto poly(ethylene glycol) modified keratin (PEGylated keratin, PK) with a bioreducible disulfide linkage. The protein‐drug conjugate prodrug, with a drug content of 20%, can self‐assemble into micelles with a mean hydrodynamic diameter of 175 nm and a narrow distribution. The in vitro controlled release profiles reveal the reduction triggered thiolated DOX (DOX‐SH) release behavior of the PK‐SS‐D micelles, with a cumulative drug release up to 52% within 10 d in the simulated tumor microenvironment in a sustained releasing mode, and a low drug leakage of 17% in the simulated normal physiological medium. The enhanced tumor growth inhibition of the proposed PK‐SS‐D prodrug micelles is revealed by the methyl tetrazolium (MTT) assays, although the released DOX‐SH prodrug possesses a lower tumor growth inhibition than DOX.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom