z-logo
Premium
Nanoscale Janus Particles with Dual Protein Functionalization
Author(s) -
Kadam Reshma,
Zilli Marina,
Maas Michael,
Rezwan Kurosch
Publication year - 2018
Publication title -
particle and particle systems characterization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 56
eISSN - 1521-4117
pISSN - 0934-0866
DOI - 10.1002/ppsc.201700332
Subject(s) - janus particles , surface modification , nanotechnology , streptavidin , pickering emulsion , janus , materials science , bioconjugation , nanoparticle , click chemistry , nanoprobe , nanoscopic scale , chemistry , chemical engineering , biotin , polymer chemistry , biochemistry , engineering
Biofunctionalized Janus particles with tailored surface chemistry are gathering interest for applications as catalysts, multifunctional cell surface targets, nanomotors, and drug delivery systems. The dual nature of the surface chemistry of Janus particles can be exploited to immobilize drugs, cell surface targets, and/or other functional molecules on both sides of the particle surface. In this study, a model system is established for the scalable preparation of nanoscale Janus particles with dual protein functionalization with the proteins ferritin and streptavidin. 80 nm silica nanoparticles (SiNPs) modified with azidosilane are used to prepare Pickering emulsions with molten wax as the droplet phase. The azide‐functionalized SiNPs on the Pickering emulsion droplets are further subjected to face‐selective silanization with biotin‐polyethylene glycol ethoxy silane. Afterward, ferritin is grafted on the azide‐functionalized side via a click‐reaction and the biotin groups are conjugated with streptavidin which is labeled with ultrasmall gold nanoparticles. In order to elucidate the advantages and limits of this approach, a detailed characterization is performed of the particles at every process step. The results show that this method represents a scalable platform for the versatile preparation of nanoscale Janus nanoparticles that can potentially be used with a wide variety of proteins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here