Premium
Zinc Oxide–Porphyrin Hybrid Rhombuses: Catalytically Active Microstructures via Self‐Assembly
Author(s) -
Düring Jasmin,
Bernhardt Sarah,
Gröhn Franziska
Publication year - 2017
Publication title -
particle and particle systems characterization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 56
eISSN - 1521-4117
pISSN - 0934-0866
DOI - 10.1002/ppsc.201600421
Subject(s) - porphyrin , nanorod , cationic polymerization , zinc , catalysis , self assembly , photochemistry , chemistry , tetra , photocatalysis , oxide , materials science , chemical engineering , nanotechnology , polymer chemistry , organic chemistry , medicinal chemistry , engineering
A novel self‐assembled organic–inorganic hybrid structure consisting of zinc oxide and two oppositely charged porphyrins, showing significantly enhanced photocatalytic activity, is presented. Electrostatic self‐assembly of the cationic tetra‐( N ‐methyl‐4‐pyridyl)porphyrin (TMPyP) with preformed assemblies of ZnO nanorods and the anionic tetra‐(4‐sulfonatophenyl)porphyrin (TPPS) in ethanol results in porphyrin microrhombuses decorated with ZnO nanorods. The structure formation is followed spectroscopically. The shape of the microrhombuses and the number of attached ZnO nanoparticles can be tuned through the porphyrin ratio TMPyP/TPPS. An enhanced and selective catalytic activity is found, giving insight into the degradation mechanism. Due to the tool‐box principle and its versatility, the concept may have great impact in fields such as solar‐energy conversion and optoelectronics.