Premium
Photodynamic Therapy of Human Hepatoma Using Semiconductor Quantum Dots as Sole Photosensitizer
Author(s) -
Sun Jiaojiao,
Guo Yuming,
Zhu Lin,
Yang Lin,
Shi Weike,
Wang Kui,
Zhang Hua
Publication year - 2017
Publication title -
particle and particle systems characterization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 56
eISSN - 1521-4117
pISSN - 0934-0866
DOI - 10.1002/ppsc.201600413
Subject(s) - photosensitizer , photodynamic therapy , chemistry , quantum dot , intracellular , biophysics , nanotechnology , cancer research , materials science , photochemistry , biochemistry , medicine , biology , organic chemistry
Abstract Currently, the studies about photodynamic therapy (PDT) of human cancers have made considerable progress and attracted tremendous attention. The existing photosensitizers used for PDT are mainly organic compounds. In order to enhance their photosensitizing efficacy, some studies reported hybrid photosensitizers consisting of inorganic quantum dots (QDs) and organic photosensitizers. Herein, a new type of photosensitizer consisting of sole semiconductor CdTe QDs with good photosensitizing efficacy, excellent water dispersibility, and stability is reported. The photosensitizer is prepared through a facile one‐step strategy using sodium hyaluronate as a stabilizing and targeting agent. Different from most of the previous reports, the as‐prepared QDs do not show inhibition effects on normal cells in the experimental concentration range, but can also be directly utilized as a photosensitizer to specifically and remarkably inhibit the proliferation of human hepatoma cells. Mechanism studies reveal that the QDs could be specifically internalized by hepatoma cells, considerably induce the generation of intracellular reactive oxidative species under light illumination, and significantly induce the necrosis of hepatoma cells. This work provides an inspiration for the direct application of QDs as a new type of photosensitizer to specifically and significantly treat human hepatoma through PDT.