Research Library

Premium Preparation of Photoluminescent Porous Silicon Nanoparticles by High‐Pressure Microfluidization
Author(s)
Roberts David S.,
Estrada Daniel,
Yagi Nobuhiro,
Anglin Emily J.,
Chan Nicole A.,
Sailor Michael J.
Publication year2017
Publication title
particle and particle systems characterization
Resource typeJournals
PublisherWiley-Blackwell
The use of high‐shear microfluidization as a rapid, reproducible, and high‐yield method to prepare nanoparticles of porous silicon (pSi) with a narrow size distribution is described. Porous films prepared by electrochemical etch of a single‐crystal silicon wafer are removed from the substrate, fragmented, dispersed in an aqueous solution, and then processed with a microfluidizer, which generates high yields (57%) of pSi nanoparticles of narrow size distribution (PDI = 0.263) without a filtration step. Preparation of pSi nanoparticles via microfluidization improves yields (by 2.4‐fold) and particle size uniformity (by 1.8‐fold), and it lowers the total processing time (by 36‐fold) over standard ultrasonication or ball milling methods. The average diameter of the nanoparticles can be adjusted over the range 150–350 nm by appropriate adjustment of processing steps. If the fluid carrier in the microfluidizer contains an oxidant for Si, the resulting pSi particles are prepared with a core–shell structure, in which an elemental Si core is encased in a silicon oxide shell. When an aqueous sodium tetraborate processing solution is used, microfluidization generates photoluminescent core–shell pSi particles with a quantum yield of 19% in a single step in less than 20 min.
Subject(s)aqueous solution , chemical engineering , chemistry , composite material , engineering , filtration (mathematics) , geology , materials science , mathematics , nanoparticle , nanotechnology , oceanography , optoelectronics , organic chemistry , particle (ecology) , particle size , porosity , porous silicon , silicon , sonication , statistics , substrate (aquarium) , wafer
Language(s)English
SCImago Journal Rank0.877
H-Index56
eISSN1521-4117
pISSN0934-0866
DOI10.1002/ppsc.201600326

Seeing content that should not be on Zendy? Contact us.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here