Premium
Two‐Phase Flow Characterization by Automated Digital Image Analysis. Part 2: Application of PDIA for Sizing Sprays
Author(s) -
Kashdan Julian T.,
Shrimpton John S.,
Whybrew Adam
Publication year - 2004
Publication title -
particle and particle systems characterization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 56
eISSN - 1521-4117
pISSN - 0934-0866
DOI - 10.1002/ppsc.200400898
Subject(s) - sphericity , sizing , body orifice , nozzle , volume (thermodynamics) , materials science , digital image , analytical chemistry (journal) , acoustics , optics , mathematics , image processing , chemistry , physics , computer science , chromatography , composite material , engineering , image (mathematics) , mechanical engineering , organic chemistry , quantum mechanics , artificial intelligence
A series of experiments were conducted in order to assess the robustness and accuracy of a recently developed digital image analysis technique (PDIA). This paper investigates the application of the PDIA technique to the sizing of relatively small fuel droplets of diameters in the range 5 to 30 μm produced by a pressure‐swirl atomizer. The measurement performance of the PDIA system has been assessed in terms of individual object diameters and also number and volume probability density functions of diameter in comparison to phase Doppler anemometry (PDA) data obtained under identical conditions. PDIA measurements revealed good agreement with spray data obtained by PDA at a measurement location 36 diameters downstream from the nozzle orifice with differences in the arithmetic mean diameter, D 10 and volume mean diameter, D 30 of approximately 5 and 3% respectively. The PDIA technique was shown to detect the presence of very large, predominantly non‐spherical droplets whose diameters were in excess of 100 μm. These droplets, although few in number constitute a significant proportion of the total spray volume and would have otherwise been either erroneously measured or have passed through the probe volume undetected using PDA due to non‐sphericity. Smaller objects may also be measured correctly by both methods although sensitivity to signal‐to‐noise ratio, for both methods can generate spurious and contradictory errors.