z-logo
Premium
Numerical simulation of the impacts of climate warming on a permafrost mound
Author(s) -
Buteau Sylvie,
Fortier Richard,
Delisle Georg,
Allard Michel
Publication year - 2004
Publication title -
permafrost and periglacial processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.867
H-Index - 76
eISSN - 1099-1530
pISSN - 1045-6740
DOI - 10.1002/ppp.474
Subject(s) - permafrost , active layer , geology , settlement (finance) , thermal conductivity , ice wedge , hydrology (agriculture) , thermal conduction , climate change , geomorphology , geotechnical engineering , layer (electronics) , oceanography , materials science , world wide web , computer science , payment , composite material , thin film transistor
A finite‐element, one‐dimensional, heat conduction model, which takes thaw settlement into account following drainage of excess water produced by the melt of ice lenses at the permafrost boundaries, is used to assess the thermal response of a permafrost mound in Northern Québec to different scenarios of climate warming. In addition to the cryostratigraphy of the mound, the unfrozen water content, thermal conductivity and volumetric heat capacity of the marine sediments comprising the mound were integrated in the simulation. Warming rates from 0.03 to 0.01°C/year are predicted in the mound for a gradual linear increase in mean annual air temperature of 0.05°C/year over a 100 year period. Downward thawing occurs at the permafrost table at rates of 1–13 cm/year but there is also upward thawing from the permafrost base at rates of 2.4–5.8 cm/year. The thermal response of permafrost is not linear with time. At the end of the 100 year period, thaw settlement predicted was 1.4 m and the active layer was 3.22 m thick over a talik of 1.46 m thick. This is in comparison to an active layer of 2.14 m thick over a talik of 1.86 m if thaw settlement is not considered in the simulation. Thaw settlement, the direct result of ice melting in permafrost, brings permafrost nearer to the surface and accelerates its thawing. It should be included in any numerical simulation. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here