z-logo
Premium
Degradation of talus‐derived rock glaciers in the Upper Engadin, Swiss Alps
Author(s) -
Ikeda Atsushi,
Matsuoka Norikazu
Publication year - 2002
Publication title -
permafrost and periglacial processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.867
H-Index - 76
eISSN - 1099-1530
pISSN - 1045-6740
DOI - 10.1002/ppp.413
Subject(s) - geology , rock glacier , permafrost , glacier , geomorphology , glacial period , physical geography , geochemistry , oceanography , geography
Active and inactive rock glaciers differ from relict rock glaciers in the presence of subsurface permafrost, as indicated by high seismic velocity, high DC resistivity and low bottom temperature of the winter snow cover. The lack of vegetation on the frontal slope and negative mean annual surface temperatures (MAST) distinguish active rock glaciers from inactive rock glaciers. Increasing MAST induces melting of ice‐rich permafrost, which is followed by the subsidence of rock glaciers. As a result, convex‐up transverse profiles are replaced by flat or depressed profiles. Permafrost degradation inactivates rock glaciers by decreasing shear stress, within or at the base of the deforming ice/rock mixture, causing stabilization and declination of the frontal slope. Relict rock glaciers are usually associated with soil development over the surficial clasts, which is responsible for further declination of the frontal slope and a more rounded topography. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here