Premium
Fabrication of Bioactive Surfaces by Plasma Polymerization Techniques Using a Novel Acrylate‐Derived Monomer
Author(s) -
Francesch Laia,
Garreta Elena,
Balcells Mercedes,
Edelman Elazer R.,
Borrós Salvador
Publication year - 2005
Publication title -
plasma processes and polymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 74
eISSN - 1612-8869
pISSN - 1612-8850
DOI - 10.1002/ppap.200500042
Subject(s) - monomer , polymerization , materials science , polymer , plasma polymerization , chemical engineering , surface modification , polymer chemistry , streptavidin , acrylate , methacrylate , coating , contact angle , nanotechnology , chemistry , composite material , biochemistry , biotin , engineering
Summary: Material coating of surfaces can enhance receptivity for cells and biological compounds. Existing plasma coating technologies and possible materials are limited. A new polymer from pentafluorophenyl methacrylate (PFM) monomer was synthesized, and was plasma enhanced chemical vapor deposited on silicon wafers. The optimal plasma polymerization parameters for the PFM monomer and its copolymerization with the cross‐linking agents 1,7‐octadiene and 1,4‐butanediol divinyl ether co‐monomers were established. All the resulting polymer coatings leave the labile pentafluorophenyl group on the surface, enabling a rapid reaction with an amino‐terminated biotin ligand and allowing layer‐by‐layer self‐assembly of biotin‐streptavidin. In addition, the deposited polymer layers showed an extremely flat morphology with a nanoscale average roughness. This approach provides an easy means of obtaining functionalized surfaces which can enhance and control the biocompatibility of bulk materials. Merging the versatility of plasma polymerization processes, via simple monomers and reaction conditions, with biological platforms that enable target of cell adhesion brings us closer to the ultimate goal of controlling cell function through structured surfaces for their application in tissue engineering.Schematic representation of a functionalized surface obtained by plasma polymerization of the PFM monomer, showing labile pentafluorophenyl groups on the surface.