Temperature‐dependent self‐assembly and rheological behavior of a thermoreversible pmma–P n BA–PMMA triblock copolymer gel
Author(s) -
Zabet Mahla,
Mishra Satish,
Boy Ramiz,
Walters Keisha B.,
Naskar Amit K.,
Kundu Santanu
Publication year - 2017
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.24336
Subject(s) - copolymer , materials science , glass transition , polymer chemistry , rheometry , rheology , atmospheric temperature range , solvent , neutron scattering , chemical engineering , polymer , thermodynamics , composite material , scattering , organic chemistry , chemistry , physics , optics , engineering
Self‐assembly and mechanical properties of triblock copolymers in a mid‐block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–P n BA–PMMA] in two different mid‐block selective solvents, n ‐butanol and 2‐ethyl‐1‐hexanol. Gel formation resulting from end‐block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of −80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear‐rheometry, thermal analysis, and small‐angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end‐blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self‐assembled triblock copolymer gel over a large length scale and wide temperature range. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 877–887
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom