
Photopolymerization kinetics in and of self‐assembling lyotropic liquid crystal templates
Author(s) -
Worthington Kristan S.,
Baguenard Céline,
Forney Bradley S.,
Guymon C. Allan
Publication year - 2017
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.24296
Subject(s) - polymerization , photopolymer , monomer , mesophase , lyotropic liquid crystal , kinetics , polymer , polymer chemistry , materials science , chemical engineering , lyotropic , copolymer , nanostructure , liquid crystal , chemistry , nanotechnology , composite material , liquid crystalline , physics , optoelectronics , quantum mechanics , engineering
Photopolymerization in and of lyotropic liquid crystal (LLC) template phases shows great promise for generating nanostructure in organic polymers. Interestingly, the order imposed on the polymerization system in LLCs significantly alters polymerization kinetics. The rate of polymerization of hydrophilic monomers increases with increasing LLC order, primarily due to monomer/polymer association with surfactant and the resulting decrease of growing polymer chain diffusion. Conversely, as LLC order increases, hydrophobic monomers become less segregated as nonpolar volume increases, which decreases polymerization rate. The efficiency of initiators is also dependent on LLC template order, further contributing to polymerization rate changes. When reactive surfactants are used, LLC mesophase, location of reactive group, and aliphatic tail length also affect polymerization kinetics. Overall, these photopolymerization kinetics directly relate to the segregation behavior and local order of reactive groups and thus can be used to probe nanostructure evolution, facilitating understanding and control of ultimate polymer nanostructure. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 471–489