z-logo
open-access-imgOpen Access
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
Author(s) -
Wijesinghe Sidath,
Maskey Sabina,
Perahia Dvora,
Grest Gary S.
Publication year - 2015
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.23949
Subject(s) - side chain , carboxylate , chemistry , polymer , phenylene , solvent , pendant group , polymer chemistry , materials science , crystallography , stereochemistry , organic chemistry
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality have been studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro‐optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro‐optical properties which are critical in current and potential uses. This study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonyl PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent, whereas in water and implicit poor solvent, the nonyl side chains are collapsed toward the PPE backbone. Rotation around the aromatic ring is fast and no long range correlations are seen within the backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54 , 582–588

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here