Ethylene/vinyl acetate copolymer/clay nanocomposites
Author(s) -
Srivastava S. K.,
Pramanik M.,
Acharya H.
Publication year - 2005
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.20702
Subject(s) - nanocomposite , copolymer , materials science , vinyl acetate , ethylene vinyl acetate , polymer , transmission electron microscopy , polymer chemistry , scanning electron microscope , polymer clay , swelling , chemical engineering , composite material , nanotechnology , engineering
This article highlights the history, synthetic routes, material properties, and scope of ethylene/vinyl acetate copolymer (EVA)/clay nanocomposites. These nanocomposites of EVAs are achieved with either unmodified or organomodified layered silicates with different methods. The structures of the resulting polymer/inorganic nanocomposites have been characterized with X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The addition of a small amount of clay, typically less than 8 wt %, to the polymer matrix unusually promotes the material properties, such as the mechanical, thermal, and swelling properties, and increases the flame retardancy of these hybrids. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 471–480, 2006
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom