z-logo
Premium
On the swelling behavior of poly( N ‐Isopropylacrylamide ) hydrogels exposed to perfluoroalkyl acids
Author(s) -
Savage Dustin T.,
Briot Nicolas J.,
Hilt J. Zach,
Dziubla Thomas D.
Publication year - 2021
Publication title -
journal of polymer science
Language(s) - English
Resource type - Journals
eISSN - 2642-4169
pISSN - 2642-4150
DOI - 10.1002/pol.20200805
Subject(s) - swelling , self healing hydrogels , chemistry , nile red , polymer , chemical engineering , poly(n isopropylacrylamide) , polymer chemistry , fluorescence , copolymer , organic chemistry , engineering , physics , quantum mechanics
Abstract Per‐ and polyfluoroalkyl substances (PFAS) have rapidly accumulated in the environment due to their widespread use prior to commercial discussion in the early 21st century, and their slow degradation has magnified concerns of their potential toxicity. Monitoring their distribution is, therefore, necessary to evaluate and control their impact on the health of exposed populations. This investigation evaluates the capability of a simple polymeric detection scheme for PFAS based on crosslinked, thermoresponsive poly( N ‐isopropylacrylamide) (PNIPAM) hydrogels. Surveying swelling perturbations induced by several hydrotropes and comparable hydrocarbon analogs, tetraethylammonium perfluorooctane sulfonate (TPFOS) showed a significantly higher swelling ratio on a mass basis (65.5 ± 8.8 at 15°C) than any of the other analytes tested. Combining swelling with the fluorimetric response of a solvachromatic dye, nile red, revealed the fluorosurfactant to initiate observable aggregation (i.e., its critical aggregation concentration) at 0.05 mM and reach saturation (i.e., its charge neutralization concentration) at 0.5 mM. The fluorosurfactant was found to homogeneously distribute throughout the polymer matrix with energy dispersive X‐ray spectroscopy, marking the swelling response as a peculiar nexus of fluorinated interfacial positioning and delocalized electrostatic repulsion. Results from the current study hold promise for exploiting the physiochemical response of PNIPAM to assess TPFOS's concentration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here