z-logo
Premium
Effect of molecular structure of curing agents on cyclic creep in highly cross‐linked epoxy polymers
Author(s) -
Park Hyungbum,
Chung Ingyun,
Cho Maenghyo
Publication year - 2020
Publication title -
journal of polymer science
Language(s) - English
Resource type - Journals
eISSN - 2642-4169
pISSN - 2642-4150
DOI - 10.1002/pol.20200130
Subject(s) - materials science , epoxy , dihedral angle , composite material , curing (chemistry) , polymer , molecular dynamics , stiffness , monomer , computational chemistry , molecule , chemistry , organic chemistry , hydrogen bond
Ratcheting behavior of highly–cross‐linked epoxy polymers was investigated considering the effect of molecular structure of curing agents by molecular dynamics simulations. Cyclic loading–unloading simulations at two different frequencies were conducted using atomistic models for epoxies cured by aliphatic and aromatic curing agents, triethylenetetramine (TETA) and diethyltoluenediamine (DETDA) , respectively. Different ratcheting strain evolutions, dihedral angle stress accumulations, and stiffness variations were observed during the cyclic deformation simulations depending on the molecular structure of curing agents. The epoxy cured by DETDA exhibited a more rapid increase of ratcheting strain and a decrease of the stiffness toward the loading direction. Structural analyses were carried out by observing the orientation order parameter of the monomers, radius of gyration, and free volume evolution to understand the ratcheting strain behaviors and stiffness variations at atomistic scale. The structural analyses revealed that irreversible dihedral angle transitions near the benzene ring of the curing agent DETDA were responsible for low ratcheting resistance and stiffness degradation during the cyclic deformations. Whereas, the aliphatic curing agent TETA, which does not exhibit any stress possession by the irreversible dihedral angle change, was revealed to be advantageous for the ratcheting resistance and stiffness variation of the epoxy polymers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here