z-logo
Premium
New concept of organic homo‐rank compounds and its application in estimating enthalpy of formation of mono‐substituted alkanes
Author(s) -
Cao ChaoTun,
Yuan Hua,
Cao Chenzhong
Publication year - 2015
Publication title -
journal of physical organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 66
eISSN - 1099-1395
pISSN - 0894-3230
DOI - 10.1002/poc.3405
Subject(s) - chemistry , enthalpy , topological index , rank (graph theory) , standard enthalpy of formation , standard enthalpy change of formation , polarizability , absolute deviation , computational chemistry , stereochemistry , thermodynamics , organic chemistry , molecule , combinatorics , mathematics , physics , statistics
Based on the topological characteristics of distance matrices and adjacency matrices of molecular graphs, a new concept of organic homo‐rank compounds was proposed. Based on this concept, compounds can be classified into new groups other than the traditional homologues. Furthermore, novel structure–property relationship approach named as homo‐rank compounds method can be developed. The feasibility of homo‐rank compounds method was explored by estimating the enthalpy of formation of organic compounds. The group contribution index (GCI X ) and group polarizability potential index (GPI X ) of substituents X were defined and determined for mono‐substituted alkanes RX (X includes 20 substituents). The research results show that the enthalpies of formation of organic homo‐rank compounds and their isomers can be correlated very well with the parameters GCI X and GPI X . Combining the method of homologues with that of homo‐rank compounds, a general and simple quantitative correlation equation (8) was established to estimate the enthalpy of formation for RX, and the calculation precision is within the chemical accuracy ‘1 kcal/mol’. For 242 samples of RX, the average absolute deviation between the experimental and the calculated values is 2.42 kJ/mol. In addition, the enthalpies of formation of more than 2800 samples of RX were estimated. The approaches of organic homo‐rank compounds and organic homologues are independent of but complementary to each other. The combination of these two methods can help us to understand the organic molecular structure–property relationships more deeply, and to investigate these relationships more conveniently and accurately. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here