Premium
Conformational analysis of 4,4‐dimethyl‐4‐silathiane and its S‐oxides
Author(s) -
Shainyan Bagrat A.,
Suslova Ele.,
Kleinpeter Erich
Publication year - 2011
Publication title -
journal of physical organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.325
H-Index - 66
eISSN - 1099-1395
pISSN - 0894-3230
DOI - 10.1002/poc.1844
Subject(s) - conformational isomerism , chemistry , ring flip , cyclohexane conformation , crystallography , ring (chemistry) , sulfoxide , degenerate energy levels , computational chemistry , stereochemistry , molecule , hydrogen bond , organic chemistry , physics , quantum mechanics
Abstract 4,4‐Dimethyl‐4‐silathiane and its S‐oxides [ n = 0 ( 1 ), 1 ( 2 ), 2 ( 3 )] were studied experimentally by variable temperature dynamic NMR spectroscopy down to 103 K and the frozen ring inversion was revealed for all three compounds. The barriers for the degenerate ring inversion in 1 and 3 were measured to be 4.8 and 5.0 kcal/mol at the coalescence temperatures of 111 and 116 K, respectively, and practically coincide with the calculated barriers of 4.60 kcal/mol in 1 and 4.46 kcal/mol in 3 . The frozen equilibrium mixture 2‐ax/2‐eq contains 37% of the 2‐ax and 63% of the 2‐eq conformer. The ring inversion barrier proved to be ca. 4.8 kcal/mol. Calculations at the B3LYP/6‐311+G(d,p) level of theory showed the 2‐ax conformer to be 0.90 kcal/mol more stable than the 2‐eq conformer in the gas phase whereas in solution the relative stability of the conformers calculated using the PCM model at the same level of theory is inverted to become 0.19 (in CHCl 3 ) or 0.36 kcal/mol (in DMSO) in favor of the 2‐eq conformer. The chair–chair interconversion mechanism of sulfoxide 2 includes two intermediate energetically equivalent 1,4‐twist forms and the 2,5‐boat transition state: 2‐ax (chair) ⇆ 2 (1,4‐twist) ⇆ [ 2 (2,5‐boat)] ≠ ⇆ 2 (1,4‐twist) ⇆ 2‐eq (chair). The calculated ring inversion barriers are 5.1 ( 2‐ax → 2‐eq ) and 4.2 kcal/mol ( 2‐eq → 2‐ax ) in the gas phase, and 4.03 and 4.22 kcal/mol, respectively, in chloroform. Copyright © 2011 John Wiley & Sons, Ltd.