z-logo
Premium
DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions
Author(s) -
Zhang Fuhao,
Song Hong,
Zeng Min,
Li Yaohang,
Kurgan Lukasz,
Li Min
Publication year - 2019
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201900019
Subject(s) - benchmark (surveying) , computer science , protein sequencing , encode , deep learning , artificial intelligence , annotation , protein function , protein function prediction , artificial neural network , sequence (biology) , function (biology) , computational biology , machine learning , pattern recognition (psychology) , biology , peptide sequence , gene , genetics , geodesy , geography
Annotation of protein functions plays an important role in understanding life at the molecular level. High‐throughput sequencing produces massive numbers of raw proteins sequences and only about 1% of them have been manually annotated with functions. Experimental annotations of functions are expensive, time‐consuming and do not keep up with the rapid growth of the sequence numbers. This motivates the development of computational approaches that predict protein functions. A novel deep learning framework, DeepFunc, is proposed which accurately predicts protein functions from protein sequence‐ and network‐derived information. More precisely, DeepFunc uses a long and sparse binary vector to encode information concerning domains, families, and motifs collected from the InterPro tool that is associated with the input protein sequence. This vector is processed with two neural layers to obtain a low‐dimensional vector which is combined with topological information extracted from protein–protein interactions (PPIs) and functional linkages. The combined information is processed by a deep neural network that predicts protein functions. DeepFunc is empirically and comparatively tested on a benchmark testing dataset and the Critical Assessment of protein Function Annotation algorithms (CAFA) 3 dataset. The experimental results demonstrate that DeepFunc outperforms current methods on the testing dataset and that it secures the highest F max  = 0.54 and AUC = 0.94 on the CAFA3 dataset.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here