Premium
Toward the Molecular Deciphering of Pomacea canaliculata Immunity: First Proteomic Analysis of Circulating Hemocytes
Author(s) -
Boraldi Federica,
Lofaro Francesco Demetrio,
Accorsi Alice,
Ross Eric,
Malagoli Davide
Publication year - 2019
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201800314
Subject(s) - pomacea canaliculata , biology , snail , proteome , immune system , microbiology and biotechnology , proteomics , motility , immunity , parasite hosting , population , cytoskeleton , freshwater snail , immunology , cell , ecology , gene , bioinformatics , genetics , demography , sociology , world wide web , computer science
Pomacea canaliculata is a freshwater snail with interesting biological features that include invasiveness, human parasite hosting, and adult regeneration. Its immune system may represent the target for strategies aimed at controlling the spread of the snail population and its hosting of the human parasite Angiostrongylus cantonensis . Moreover, immune functions likely have a role in the snail's ability to wound heal and regenerate. Despite its importance in multiple processes, very little is known about the molecular basis of P. canaliculata immunity. Aiming to contribute to filling this gap, the ultrastructure of circulating hemocytes in healthy snails is studied and the first proteomic analysis of these cells is performed, evidencing 83 unique proteins, 96% of which have identifiable homologs in other species. Fifteen proteins are retrieved as potentially involved in immune‐related signaling pathways, such as hemocyanin, C1q‐like protein, and HSP90 together with cytoskeleton and cytoskeleton‐related proteins involved in cell motility and membrane dynamics. This first proteome study on non‐stimulated hemocytes provides a valid reference for future investigations on the molecular changes under stressful circumstances, like pathogen exposure, wounding, or environmental changes.