Premium
Over 4100 protein identifications from a Xenopus laevis fertilized egg digest using reversed‐phase chromatographic prefractionation followed by capillary zone electrophoresis–electrospray ionization–tandem mass spectrometry analysis
Author(s) -
Yan Xiaojing,
Sun Liangliang,
Zhu Guijie,
Cox Olivia F.,
Dovichi Norman J.
Publication year - 2016
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201600262
Subject(s) - chromatography , chemistry , electrospray ionization , tandem mass spectrometry , mass spectrometry , electrospray , peptide , capillary electrophoresis , high performance liquid chromatography , analytical chemistry (journal) , biochemistry
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by RPLC. One set of 30 fractions was analyzed by 100‐min CZE‐ESI‐MS/MS separations (50 h total instrument time), and a second set of 15 fractions was analyzed by 3‐h UPLC‐ESI‐MS/MS separations (45 h total instrument time). CZE‐MS/MS produced 70% as many protein IDs (4134 versus 5787) and 60% as many peptide IDs (22 535 versus 36 848) as UPLC‐MS/MS with similar instrument time (50 h versus 45 h) but with 50 times smaller total consumed sample amount (1.5 μg versus 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50‐fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically pumped nanospray interface used in CZE. This report is the first comparison of CZE‐MS/MS and UPLC‐MS/MS for large‐scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE‐ESI‐MS/MS approach those produced by UPLC‐MS/MS, but with nearly two orders of magnitude lower sample amounts.