Premium
Tissue microarray profiling in human heart failure
Author(s) -
Lal Sean,
Nguyen Lisa,
Tezone Rhenan,
Ponten Fredrik,
Odeberg Jacob,
Li Amy,
dos Remedios Cristobal
Publication year - 2016
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201600135
Subject(s) - tissue microarray , heart failure , immunohistochemistry , polyclonal antibodies , western blot , biology , microarray , computational biology , cancer research , microbiology and biotechnology , antibody , gene expression , medicine , immunology , gene , genetics
Tissue MicroArrays (TMAs) are a versatile tool for high‐throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin‐fixed paraffin‐embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four‐and‐a‐half LIM‐domain 2 (FHL2), a member of the four‐and‐a‐half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity‐purified rabbit polyclonal anti‐human FHL2 antibody. Our TMAs allowed high‐throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure.