Premium
The advantage of laser‐capture microdissection over whole tissue analysis in proteomic profiling studies
Author(s) -
Marchi Tommaso,
Braakman Rene B. H.,
Stingl Christoph,
Duijn Martijn M.,
Smid Marcel,
Foekens John A.,
Luider Theo M.,
Martens John W. M.,
Umar Arzu
Publication year - 2016
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201600004
Subject(s) - laser capture microdissection , biology , biomarker discovery , proteomics , population , biomarker , computational biology , gene expression , medicine , biochemistry , gene , environmental health
Laser-capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label-free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p-value < 0.001). 2D analysis on co-expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 (http://proteomecentral.proteomexchange.org/dataset/PXD002381).