Premium
Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose
Author(s) -
Ramada Marcelo Henrique Soller,
Steindorff Andrei Stecca,
Bloch Carlos,
Ulhoa Cirano José
Publication year - 2016
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201400546
Subject(s) - trichoderma harzianum , biology , trichoderma , cell wall , microbiology and biotechnology , chitinase , fusarium oxysporum , fusarium , fungus , biochemistry , enzyme , botany , biological pest control
Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45‐ and 30‐ fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, β‐1,3‐glucanases, glucoamylases, α‐1,3‐glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic‐related studies.