z-logo
Premium
Glutamine enema regulates colonic ubiquitinated proteins but not proteasome activities during TNBS‐induced colitis leading to increased mitochondrial activity
Author(s) -
Bertrand Julien,
MarionLetellier Rachel,
Azhar Saïda,
Chan Philippe,
Legrand Romain,
Goichon Alexis,
Ghouzali Ibtissem,
Aziz Moutaz,
Vaudry David,
Savoye Guillaume,
Déchelotte Pierre,
Coëffier Moïse
Publication year - 2015
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201400304
Subject(s) - glutamine , ubiquitin , colitis , inflammation , biochemistry , proteasome , biology , chemistry , immunology , amino acid , gene
Ubiquitin proteasome system contributes to the regulation of intestinal inflammatory response as its inhibition is associated with tissue damage improvement. We aimed to evaluate whether glutamine is able to limit inflammation by targeting ubiquitin proteasome system in experimental colitis. Colitis was induced in male rats by intrarectal instillation of 2‐4‐6‐trinitrobenzen sulfonic acid (TNBS) at day 1. From day 2 to day 6, rats daily received either an intrarectal instillation of PBS (TNBS/PBS group) or glutamine (TNBS/Gln). Rats were euthanized at day 7 and colonic samples were taken to evaluate ubiqutinated proteins by proteomic approach combining 2D electrophoresis and immunoblots directed against ubiquitin. Results were then confirmed by evaluating total expression of proteins and mRNA levels. Survival rate, TNFα, and IL‐1β mRNA were improved in TNBS/Gln compared with TNBS/PBS ( p < 0.05). Proteasome activities were affected by TNBS but not by glutamine. We identified eight proteins that were less ubiquitinated in TNBS/PBS compared with controls with no effect of glutamine. Four proteins were more ubiquitinated in TNBS/PBS group and restored in TNBS/Gln group. Finally, 12 ubiquitinated proteins were only affected by glutamine. Among proteins affected by glutamine, eight proteins (GFPT1, Gapdh, Pkm2, LDH, Bcat2, ATP5a1, Vdac1, and Vdac2) were involved in metabolic pathways. In conclusion, glutamine may regulate ubiquitination process during intestinal inflammation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here