Premium
Proteomic profile of carbonylated proteins in rat liver: Discovering possible mechanisms for tetracycline‐induced steatosis
Author(s) -
Deng Zhenglu,
Yan Siyu,
Hu Hui,
Duan Zhigui,
Yin Lanxuan,
Liao Shenke,
Sun Yubai,
Yin Dazhong,
Li Guolin
Publication year - 2015
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201400115
Subject(s) - steatosis , oxidative stress , oxidative phosphorylation , biochemistry , tetracycline , mitochondrion , chemistry , lipid metabolism , fatty liver , beta oxidation , enzyme , biology , medicine , endocrinology , disease , antibiotics
To investigate biochemical mechanisms for the tetracycline‐induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long‐chain specific acyl‐CoA dehydrogenase was one of the key enzymes regulating fatty acid β‐oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline‐induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline‐induced steatosis.