Premium
Proteomic analysis of extracellular matrices used in stem cell culture
Author(s) -
Hughes Chris S.,
Radan Lida,
Betts Dean,
Postovit Lynne M.,
Lajoie Gilles A.
Publication year - 2011
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201100030
Subject(s) - extracellular matrix , fibronectin , embryonic stem cell , microbiology and biotechnology , proteomics , biology , induced pluripotent stem cell , matrix (chemical analysis) , cell culture , fibroblast , chemistry , biochemistry , computational biology , in vitro , genetics , gene , chromatography
Numerous matrices for the growth of human embryonic stem cells (hESC) in vitro have been described. However, their exact composition is typically unknown. Information on the components of these matrices will aid in the development of a fully defined growth surface for hESCs. These matrices typically consist of mixture of proteins present in a wide range of abundance making their characterization challenging. In this study, we performed the proteomic analysis of five previously uncharacterized matrices: CellStart, Human Basement Membrane Extract (Human BME), StemXVivo, Bridge Human Extracellular Matrix (BridgeECM), and mouse embryonic fibroblast conditioned matrix (MEF‐CMTX). Based on a proteomics protocol optimized using lysates from HeLa cells, we undertook the analysis of the five complex extracellular matrix (ECM) samples using a combination of strong anion and cation exchange chromatography and SDS‐PAGE. For each of these matrices, we identify numerous proteins, indicating their complex nature. We also compared these results with a similar proteomics analysis of the growth matrix, Matrigel™. From these analyses, we observed that fibronectin is a primary component of nearly all hESC supportive matrices. This observation led to the investigation of the suitability of fibronectin as a defined ECM for the growth of hESCs. We found that fibronectin promotes the maintenance of pluripotent H9 and CA1 hESCs in an undifferentiated state using mTeSR1 medium. This finding validates the utility of characterizing matrices used for hESC growth in revealing ECM components required for culturing hESCs in a universally applicable defined system.