Premium
Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies
Author(s) -
Verma Nisha,
Rettenmeier Albert W.,
SchmitzSpanke Simone
Publication year - 2011
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.201000320
Subject(s) - biology , proteomics , xenotransplantation , computational biology , domestic pig , bioinformatics , genetics , medicine , gene , transplantation , forestry , geography , surgery
Of the numerous animal models available for proteomic studies only a small number have been successfully used in understanding human biology. To date, rodents have been widely employed in proteomic and genomic studies but often these models do not truly mimic the relevant human conditions. On the other hand, the pig shows similarity in size, shape and physiology to human and has been used as a major mammalian model for many studies concerning xenotransplantation, cardiovascular diseases, blood dynamics, nutrition, general metabolic functions, digestive‐related disorders, respiratory diseases, diabetes, kidney and bladder diseases, organ‐specific toxicity, dermatology and neurological sequelae. With the substantially improved knowledge of the structure and function of the pig genome in the last two decades it has been found that this animal shares a high sequence and chromosomal structure homology with humans. Nevertheless, in comparison to other available model organisms, very little work has been devoted to pig proteomics until recently. Keeping this in mind, the present review will highlight some of the advantages and disadvantages of pig as a model system for proteomic studies.