Premium
Cover Picture: Proteomics 5/2009
Publication year - 2009
Publication title -
proteomics
Language(s) - English
Resource type - Reports
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.200990013
Subject(s) - proteomics , proteome , adenylate kinase , chemistry , biochemistry , enzyme , gene
In this issue of Proteomics you will find the following highlighted articles: Heart (pump) broken? Hearts are pumps within pumps within channels and pumps. Calcium is pumped, potassium, sodium, amino acids, and electrons are all pumped, channeled or driven until, finally, blood is pumped. Failure of one or more pumps leads to a heart attack. This report from Zlatkovic et al. looks at the sub‐proteome associated with hypertensive failure of the K + ATP channel and associated cardiomyopathy that develops in KIR6.2 knock‐out mice. Out of >900 reproducible 2‐DE spots, 81 displayed significant over‐ or under‐expression, a number of which validated previously proposed interactions with the Kir6.2 channel. Two‐thirds were down‐regulations, including creatine kinase, adenylate kinase, and lactate dehydrogenase. A total of 114 proteins were ontologically mapped into the K + ATP‐dependent sub‐proteome and a role in hypertensive heart failure. Interaction mapping found >240 nodes and >1200 interactions/edges. A good foundation for future work. Zlatkovic, J. et al. , Proteomics 2009, 9, 1314‐1325. The deeper you dig, the more you find A classical biochemist interested in protein‐protein interactions purifies his protein away from other proteins, seeking the highest “‐fold purification”. A proteomicist, on the other hand, looks for “consistent contamination” – i.e. association – of the protein of interest with other proteins. This requires high resolution separations and high accuracy concentration determinations. You can only work with species with concentrations above the detection limit (DL) for the detection method. 2‐DE MS has a DL of approximately 10 −8 M, LC‐MS/MS is ∼10 −10 M and saturating Cy5 dye method is ∼10 −13 M. Archakov et al. report on an atomic force microscope technique that can yield a DL of 10 −16 M when the target is irreversibly fixed to the bait to avoid the losses due to dissociation kinetics. At that level, over 1 000 000 different proteins can be seen in human plasma. How many biomarkers do you want? Math warning: more equations than figures. Archakov, A. et al. , Proteomics 2009, 9, 1326‐1343. Unexplored territory: a catfish pathogen's proteome As genomic and proteomic tools become more powerful and cheaper per base or peptide, we can expect to see more papers like this one by Dumpala et al. , focused on an organism of modest economic value. Each paper will, however, contribute a new niche with alternative adaptations for survival. In this case, we are introduced to Edwardsiella ictaluri , a Gram negative pathogen of farm‐raised channel catfish. Enteric septicemia of catfish is the most frequent disease of the commercially farmed catfish and appears in acute and chronic forms. For the work reported here, the bacteria were grown in culture, washed, lysed and separated by 2‐DE TOF/TOF or 2‐D LC‐MS/MS for peptide identification. The combined methods identified 788 unique proteins, including 73 ribosomal proteins, several protein synthesis factors, tRNA synthases and a number of other proteins that could be assigned by orthology to Escherichia coli or Edwardsiella tarda . Dumpala, P. R. et al. , Proteomics 2009, 9, 1353‐1363.