Premium
Gilthead sea bream liver proteome altered at low temperatures by oxidative stress
Author(s) -
Ibarz Antoni,
MartínPérez Miguel,
Blasco Josefina,
Bellido David,
de Oliveira Eliandre,
FernándezBorràs Jaume
Publication year - 2010
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.200900528
Subject(s) - oxidative stress , biochemistry , thioredoxin , peroxiredoxin , glutathione , lipid peroxidation , catalase , biology , methionine , superoxide dismutase , chemistry , enzyme , amino acid , peroxidase
Gilthead sea bream exposed to the cold show multiple physiological alterations, particularly in liver. A typical cold‐stress response was reproduced in gilthead sea bream acclimated to 20°C (Warm group) when the water temperature was lowered to 8°C (Cold group). After 10 days, thiobarbituric acid reactive substances in the liver had increased by 50%, and nitric oxide had increased twofold. This indicates that lipid peroxidation and oxidative stress had occurred. Protein profiles of liver from fish in warm and cold environments were obtained by 2‐DE. Quantification of differential expression by matching spots showed that a total of 57 proteins were altered significantly. Many proteins were downregulated following cold exposure, including actin, the most abundant protein in the proteome; enzymes of amino acid metabolism; and enzymes with antioxidant capacity, such as betaine‐homocysteine‐methyl transferase, glutathione‐S‐transferase and catalase. Some proteins associated with protective action were upregulated at low temperatures, including peroxiredoxin, thioredoxin and lysozyme; as well as enzymes such as aldehyde dehydrogenase and adenosin‐methionine synthetase. However, the upregulation of proteases, proteasome activator protein and trypsinogen‐like protein indicated an increase in proteolysis. Increases in elongation factor‐1α, the GAPDH oxidative form, tubulin and Raf‐kinase inhibitor protein indicated oxidative stress and the induction of apoptosis. These data indicate that cold exposure induced oxidative damage in hepatocytes.