z-logo
Premium
The algal metabolite yessotoxin affects heterogeneous nuclear ribonucleoproteins in HepG2 cells
Author(s) -
Young Clifford,
Truman Penelope,
Boucher Magalie,
Keyzers Robert A.,
Northcote Peter,
Jordan T. William
Publication year - 2009
Publication title -
proteomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.26
H-Index - 167
eISSN - 1615-9861
pISSN - 1615-9853
DOI - 10.1002/pmic.200800725
Subject(s) - apoptosis , metabolite , biology , annexin , microbiology and biotechnology , programmed cell death , biochemistry
The dinoflagellate metabolite yessotoxin (YTX) is produced by several species of algae and accumulates in marine food chains, leading to concerns about possible affects on aquaculture industries and human health. In mice used for toxicity testing, YTX is lethal by the intraperitoneal route, but is considerably less toxic when orally administered. The mode of action of YTX and its potential effect on humans is unclear and we therefore conducted the first proteomic analysis of the effects of this compound. We used 2‐DE to examine protein changes in HepG2 cell cultures exposed to 1.4 μM YTX for 3, 12.5, 18 and 24 h. After selecting proteins that changed more than three‐fold after YTX exposure, 55 spots were deemed significantly affected by the toxin ( p <0.05). Major groups of affected proteins include members from the heterogeneous nuclear ribonucleoprotein (hnRNP), lamin, cathepsin and heat shock protein families that often are associated with apoptosis. We therefore confirmed apoptosis using Annexin‐V‐FLUOS staining of phosphatidylserine exposed at the surface of apoptotic cells. Ingenuity pathways analysis also indicated effects on pathways involved in protein processing, cell cycling and cell death.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here