z-logo
Premium
Nanocrystalline‐silicon hole contact layers enabling efficiency improvement of silicon heterojunction solar cells: Impact of nanostructure evolution on solar cell performance
Author(s) -
Umishio Hiroshi,
Sai Hitoshi,
Koida Takashi,
Matsui Takuya
Publication year - 2021
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.3368
Subject(s) - materials science , nanocrystalline silicon , plasma enhanced chemical vapor deposition , amorphous silicon , silicon , solar cell , passivation , heterojunction , chemical vapor deposition , crystalline silicon , optoelectronics , energy conversion efficiency , nanotechnology , layer (electronics)
Hydrogenated amorphous silicon (a‐Si:H) is a key enabler in high‐efficiency crystalline silicon solar cells known as the silicon heterojunction technology. Although efforts have been devoted to replacing doped a‐Si:H contact layer by hydrogenated nanocrystalline silicon (nc‐Si:H) to take advantage of its superior optoelectrical properties, it is still unclear whether the nc‐Si:H outperforms the a‐Si:H at the high efficiency level. Here, we show that boron‐doped ( p )nc‐Si:H prepared by plasma‐enhanced chemical vapor deposition (PECVD) acts as an efficient hole contact layer, providing not only a mitigation of the parasitic absorption loss but also improvements in passivation and electrical contact properties. This results in an efficiency increase by 0.3%–0.6% absolute compared to the reference cell with the ( p )a‐Si:H, and a best cell efficiency of 23.54%. We find that the critical thickness of the ( p )nc‐Si:H layers required for gaining high efficiency ( t c ~ 15–30 nm) is a factor of 3–6 greater than that of the ( p )a‐Si:H. UV Raman spectroscopy and electrical conductivity measurements reveal that the t c of the ( p )nc‐Si:H is associated with the layer growth needing for the surface coalescence of nanocrystals, determining the hole selectivity and the contact resistivity at the electrode/( p )nc‐Si:H interface. Our results suggest that such nanostructure evolution can be hastened by using a very‐high‐frequency PECVD process.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom