Premium
Photovoltaic chimney: Thermal modeling and concept demonstration for integration in buildings
Author(s) -
Ortiz Lizcano Juan Camilo,
Haghighi Zoheir,
Wapperom Sander,
Infante Ferreira Carlos,
Isabella Olindo,
v. d. Dobbelsteen Andy,
Zeman Miro
Publication year - 2020
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.3194
Subject(s) - solar chimney , chimney (locomotive) , photovoltaic system , thermal , environmental science , sensitivity (control systems) , heat transfer , flow (mathematics) , nuclear engineering , marine engineering , mechanical engineering , materials science , meteorology , mechanics , solar energy , electrical engineering , engineering , inlet , electronic engineering , physics
Abstract This work presents the concept of a photovoltaic (PV)‐powered solar chimney. We modeled and experimentally studied the integration of a PV system within a naturally ventilated façade (NVF), attempting to use the inherent cavity as a ventilation channel to transfer heat. Thermodynamic models were created to study the thermal and, therefore, the electrical performance of a PV system installed at different positions within the cavity of the NVF. An experimental setup of the PV chimney was manufactured to validate the computational models. Results show low root mean square error (RMSE) values for the prediction of the mass flow and the temperature of the different materials considered in the chimney. A basic sensitivity analysis was performed to find the best position of the PV modules within the chimney for a three‐story household in the Netherlands. Optimization showed that with a cavity depth of 0.2 m with PV modules located at the front layer, the electric annual yield is maximized. For the same cavity depth, placing the modules in the middle significantly increases heat flow production, albeit with a reduction on electrical performance.