z-logo
Premium
Optical properties and performance of pyramidal texture silicon heterojunction solar cells: K ey role of vertex angles
Author(s) -
Mrazkova Zuzana,
Sobkowicz Igor Paul,
Foldyna Martin,
Postava Kamil,
Florea Ileana,
Pištora Jaromír,
Roca i Cabarrocas Pere
Publication year - 2018
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.2994
Subject(s) - materials science , pyramid (geometry) , solar cell , heterojunction , silicon , optoelectronics , optics , reflection (computer programming) , photovoltaic system , vertex (graph theory) , etching (microfabrication) , open circuit voltage , short circuit , voltage , nanotechnology , computer science , electrical engineering , physics , graph , engineering , theoretical computer science , layer (electronics) , programming language
Silicon heterojunction solar cells with pyramidal textured surfaces created by different etching conditions and their properties related to device efficiency (short‐circuit current density and open‐circuit voltage) are studied. An easy‐to‐apply model is proposed to estimate reflection losses, optimize the multilayer structure of the solar cell, and enhance photovoltaic conversion efficiency. The effects of etching treatments and pyramid geometry on overall device performance are discussed in detail. The study is completed by measurement of pyramid vertex angles of different textures. A difference from the expected and generally accepted theoretical value of 70.52° is demonstrated and explained based on observation from high‐resolution transmission electron microscopy. The multilayer structure of silicon heterojunction solar cells is optimized with respect to various pyramid vertex angles, using the designed optical model to minimize absorption and reflection losses.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here